Fedosov Deformation Quantization as a BRST Theory

نویسندگان

  • M. A. Grigoriev
  • S. L. Lyakhovich
چکیده

The relationship is established between the Fedosov deformation quantization of a general symplectic manifold and the BFV-BRST quantization of constrained dynamical systems. The original symplectic manifold M is presented as a second class constrained surface in the fibre bundle T * ρ M which is a certain modification of a usual cotangent bundle equipped with a natural symplectic structure. The second class system is converted into the first class one by continuation of the constraints into the extended manifold, being a direct sum of T * ρ M and the tangent bundle T M. This extended manifold is equipped with a nontrivial Poisson bracket which naturally involves two basic ingredients of Fedosov geometry: the symplectic structure and the symplectic connection. The constructed first class constrained theory, being equivalent to the original symplectic manifold, is quantized through the BFV-BRST procedure. The existence theorem is proven for the quantum BRST charge and the quantum BRST invariant observables. The adjoint action of the quantum BRST charge is identifyed with the Abelian Fedosov connection while any observable, being proven to be a unique BRST invariant continuation for the values defined in the original symplectic manifold, is identified with the Fedosov flat section of the Weyl bundle. The Fedosov fibrewise star multiplication is thus recognized as a conventional product of the quantum BRST invariant observables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brst Quantization of Quasi-symplectic Manifolds and Beyond

A class of factorizable Poisson brackets is studied which includes almost all reasonable Poisson manifolds. In the simplest case these brackets can be associated with symplectic Lie algebroids (or, in another terminology, with triangular Lie bialgebroids associated to a nondegenerate r-matrix). The BRST theory is applied to describe the geometry underlying these brackets and to develop a covari...

متن کامل

Elements of Fedosov geometry in Lagrangian BRST Quantization

A Lagrangian formulation of the BRST quantization of generic gauge theories in general irreducible non-Abelian hypergauges is proposed on the basis of the multilevel Batalin–Tyutin formalism and a special BV–BFV dual description of a reducible gauge model on the symplectic supermanifold M0 locally parameterized by the antifields for Lagrangian multipliers and the fields of the BV method. The qu...

متن کامل

Fedosov supermanifolds: II. Normal coordinates

The formulation of fundamental physical theories, classical as well as quantum ones, by differential geometric methods nowadays is well established and has a great conceptual virtue. Probably, the most prominent example is the formulation of general relativity on Riemannian manifolds, i.e., the geometrization of the gravitational force; no less important is the geometric formulation of gauge fi...

متن کامل

Deformation Quantization of Almost Kähler Models and Lagrange–Finsler Spaces

Finsler and Lagrange spaces can be equivalently represented as almost Kähler manifolds endowed with a metric compatible canonical distinguished connection structure generalizing the Levi Civita connection. The goal of this paper is to perform a natural Fedosov– type deformation quantization of such geometries. All constructions are canonically derived for regular Lagrangians and/or fundamental ...

متن کامل

Fedosov ∗-products and quantum momentum maps

The purpose of the paper is to study various aspects of star products on a symplectic manifold related to the Fedosov method. By introducing the notion of “quantum exponential maps”, we give a criterion characterizing Fedosov connections. As a consequence, a geometric realization is obtained for the equivalence between an arbitrary ∗-product and a Fedosov one. Every Fedosov ∗-product is shown t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000